Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Clin Infect Dis ; 78(Supplement_2): S83-S92, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662692

ABSTRACT

Over the past decade, considerable progress has been made in the control, elimination, and eradication of neglected tropical diseases (NTDs). Despite these advances, most NTD programs have recently experienced important setbacks; for example, NTD interventions were some of the most frequently and severely impacted by service disruptions due to the coronavirus disease 2019 (COVID-19) pandemic. Mathematical modeling can help inform selection of interventions to meet the targets set out in the NTD road map 2021-2030, and such studies should prioritize questions that are relevant for decision-makers, especially those designing, implementing, and evaluating national and subnational programs. In September 2022, the World Health Organization hosted a stakeholder meeting to identify such priority modeling questions across a range of NTDs and to consider how modeling could inform local decision making. Here, we summarize the outputs of the meeting, highlight common themes in the questions being asked, and discuss how quantitative modeling can support programmatic decisions that may accelerate progress towards the 2030 targets.


Subject(s)
COVID-19 , Neglected Diseases , Tropical Medicine , Neglected Diseases/prevention & control , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Models, Theoretical , World Health Organization , SARS-CoV-2 , Decision Making , Global Health
2.
Parasit Vectors ; 17(1): 162, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553759

ABSTRACT

BACKGROUND: In the Greater Mekong Subregion (GMS), new vector-control tools are needed to target mosquitoes that bite outside during the daytime and night-time to advance malaria elimination. METHODS: We conducted systematic literature searches to generate a bionomic dataset of the main malaria vectors in the GMS, including human blood index (HBI), parity proportion, sac proportion (proportion with uncontracted ovary sacs, indicating the amount of time until they returned to host seeking after oviposition) and the resting period duration. We then performed global sensitivity analyses to assess the influence of bionomics and intervention characteristics on vectorial capacity. RESULTS: Our review showed that Anopheles minimus, An. sinensis, An. maculatus and An. sundaicus display opportunistic blood-feeding behaviour, while An. dirus is more anthropophilic. Multivariate regression analysis indicated that environmental, climatic and sampling factors influence the proportion of parous mosquitoes, and resting duration varies seasonally. Sensitivity analysis highlighted HBI and parity proportion as the most influential bionomic parameters, followed by resting duration. Killing before feeding is always a desirable characteristic across all settings in the GMS. Disarming is also a desirable characteristic in settings with a low HBI. Repelling is only an effective strategy in settings with a low HBI and low parity proportion. Killing after feeding is only a desirable characteristic if the HBI and parity proportions in the setting are high. CONCLUSIONS: Although in general adopting tools that kill before feeding would have the largest community-level effect on reducing outdoor transmission, other modes of action can be effective. Current tools in development which target outdoor biting mosquitoes should be implemented in different settings dependent on their characteristics.


Subject(s)
Anopheles , Malaria , Animals , Female , Humans , Malaria/prevention & control , Mosquito Vectors , Ecology , Feeding Behavior
4.
PLoS Negl Trop Dis ; 18(2): e0011362, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38422118

ABSTRACT

Opisthorchis viverrini is a parasitic liver fluke contracted by consumption of raw fish, which affects over 10 million people in Southeast Asia despite sustained control efforts. Chronic infections are a risk factor for the often fatal bile duct cancer, cholangiocarcinoma. Previous modeling predicted rapid elimination of O. viverrini following yearly mass drug administration (MDA) campaigns. However, field data collected in affected populations shows persistence of infection, including heavy worm burden, after many years of repeated interventions. A plausible explanation for this observation is systematic adherence of individuals in health campaigns, such as MDA and education, with some individuals consistently missing treatment. We developed an agent-based model of O. viverrini which allows us to introduce various heterogeneities including systematic adherence to MDA and education campaigns at the individual level. We validate the agent-based model by comparing it to a previously published population-based model. We estimate the degree of systematic adherence to MDA and education campaigns indirectly, using epidemiological data collected in Lao PDR before and after 5 years of repeated MDA, education and sanitation improvement campaigns. We predict the impact of interventions deployed singly and in combination, with and without the estimated systematic adherence. We show how systematic adherence can substantially increase the time required to achieve reductions in worm burden. However, we predict that yearly MDA campaigns alone can result in a strong reduction of moderate and heavy worm burden, even under systematic adherence. We predict latrines and education campaigns to be particularly important for the reduction in overall prevalence, and therefore, ultimately, elimination. Our findings show how systematic adherence can explain the observed persistence of worm burden; while emphasizing the benefit of interventions for the entire population, even under systematic adherence. At the same time, the results highlight the substantial opportunity to further reduce worm burden if patterns of systematic adherence can be overcome.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Opisthorchiasis , Opisthorchis , Animals , Humans , Opisthorchiasis/drug therapy , Opisthorchiasis/epidemiology , Opisthorchiasis/prevention & control , Mass Drug Administration , Cholangiocarcinoma/epidemiology , Bile Duct Neoplasms/epidemiology , Bile Ducts, Intrahepatic/parasitology
5.
Comput Biol Med ; 168: 107716, 2024 01.
Article in English | MEDLINE | ID: mdl-38039890

ABSTRACT

The effectiveness of vector-control tools is often assessed by experiments as a reduction in mosquito landings using human landing catches (HLCs). However, HLCs alone only quantify a single characteristic and therefore do not provide information on the overall impacts of the intervention product. Using data from a recent semi-field study which used time-stratified HLCs, aspiration of non-landing mosquitoes, and blood feeding, we suggest a Bayesian inference approach for fitting such data to a stochastic model. This model considers both personal protection, through a reduction in biting, and community protection, from mosquito mortality and disarming (prolonged inhibition of blood feeding). Parameter estimates are then used to predict the reduction of vectorial capacity induced by etofenpox-treated clothing, picaridin topical repellents, transfluthrin spatial repellents and metofluthrin spatial repellents, as well as combined interventions for Plasmodium falciparum malaria in Anopleles minimus. Overall, all interventions had both personal and community effects, preventing biting and killing or disarming mosquitoes. This led to large estimated reductions in the vectorial capacity, with substantial impact even at low coverage. As the interventions aged, fewer mosquitoes were killed; however the impact of some interventions changed from killing to disarming mosquitoes. Overall, this inference method allows for additional modes of action, rather than just reduction in biting, to be parameterised and highlights the tools assessed as promising malaria interventions.


Subject(s)
Anopheles , Animals , Humans , Aged , Mosquito Vectors , Mosquito Control/methods , Bayes Theorem , Models, Theoretical
6.
Chimia (Aarau) ; 77(9): 582-592, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-38047834

ABSTRACT

In pursuing novel therapeutic solutions, drug discovery and development rely on efficiently utilising existing knowledge and resources. Repurposing know-how, a strategy that capitalises on previously acquired information and expertise, has emerged as a powerful approach to accelerate drug discovery and development processes, often at a fraction of the costs of de novo developments. For 80 years, collaborating within a network of partnerships, the Swiss Tropical and Public Health Institute (Swiss TPH) has been working along a value chain from innovation to validation and application to combat poverty-related diseases. This article presents an overview of selected know-how repurposing initiatives conducted at Swiss TPH with a particular emphasis on the exploration of drug development pathways in the context of neglected tropical diseases and other infectious diseases of poverty, such as schistosomiasis, malaria and human African trypanosomiasis.


Subject(s)
Drug Repositioning , Public Health , Humans , Drug Development , Drug Discovery , Switzerland
7.
Sci Rep ; 13(1): 22750, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38123585

ABSTRACT

Free-roaming domestic dogs (FRDD), as vectors of zoonotic diseases, are of high relevance for public health. Understanding roaming patterns of dogs can help to design disease control programs and disease transmission simulation models. Studies on GPS tracking of dogs report stark differences in recording periods. So far, there is no accepted number of days required to capture a representative home range (HR) of FRDD. The objective of this study was to evaluate changes in HR size and shape over time of FRDD living in Chad, Guatemala, Indonesia and Uganda and identify the period required to capture stable HR values. Dogs were collared with GPS units, leading to a total of 46 datasets with, at least, 19 recorded days. For each animal and recorded day, HR sizes were estimated using the Biased Random Bridge method and percentages of daily change in size and shape calculated and taken as metrics. The analysis revealed that the required number of days differed substantially between individuals, isopleths, and countries, with the extended HR (95% isopleth value) requiring a longer recording period. To reach a stable HR size and shape values for 75% of the dogs, 26 and 21 days, respectively, were sufficient. However, certain dogs required more extended observational periods.


Subject(s)
Homing Behavior , Public Health , Animals , Dogs , Indonesia , Guatemala , Chad
8.
Malar J ; 22(1): 254, 2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37661286

ABSTRACT

BACKGROUND: Global interest in malaria elimination has prompted research on active test and treat (TaT) strategies. METHODS: A systematic review and meta-analysis were conducted to assess the effectiveness of TaT strategies to reduce malaria transmission. RESULTS: A total of 72 empirical research and 24 modelling studies were identified, mainly focused on proactive mass TaT (MTaT) and reactive case detection (RACD) in higher and lower transmission settings, respectively. Ten intervention studies compared MTaT to no MTaT and the evidence for impact on malaria incidence was weak. No intervention studies compared RACD to no RACD. Compared to passive case detection (PCD) alone, PCD + RACD using standard diagnostics increased infection detection 52.7% and 11.3% in low and very low transmission settings, respectively. Using molecular methods increased this detection of infections by 1.4- and 1.1-fold, respectively. CONCLUSION: Results suggest MTaT is not effective for reducing transmission. By increasing case detection, surveillance data provided by RACD may indirectly reduce transmission by informing coordinated responses of intervention targeting.


Subject(s)
Malaria , Humans , Malaria/diagnosis , Malaria/drug therapy , Malaria/prevention & control
9.
J Biol Dyn ; 17(1): 2255061, 2023 12.
Article in English | MEDLINE | ID: mdl-37733402

ABSTRACT

We consider a Darwinian (evolutionary game theoretic) version of a standard susceptible-infectious SI model in which the resistance of the disease causing pathogen to a treatment that prevents death to infected individuals is subject to evolutionary adaptation. We determine the existence and stability of all equilibria, both disease-free and endemic, and use the results to determine conditions under which the treatment will succeed or fail. Of particular interest are conditions under which a successful treatment in the absence of resistance adaptation (i.e. one that leads to a stable disease-free equilibrium) will succeed or fail when pathogen resistance is adaptive. These conditions are determined by the relative breadths of treatment effectiveness and infection transmission rate distributions as functions of pathogen resistance.


Subject(s)
Models, Biological , Humans , Treatment Outcome
10.
Sci Rep ; 13(1): 11197, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37433881

ABSTRACT

Novel malaria vector control strategies targeting the odour-orientation of mosquitoes during host-seeking, such as 'attract-and-kill' or 'push-and-pull', have been suggested as complementary tools to indoor residual spraying and long-lasting insecticidal nets. These would be particularly beneficial if they can target vectors in the peri-domestic space where people are unprotected by traditional interventions. A randomized double-blind placebo-control study was implemented in western Kenya to evaluate: a 'push' intervention (spatial repellent) using transfluthrin-treated fabric strips positioned at open eave gaps of houses; a 'pull' intervention placing an odour-baited mosquito trap at a 5 m distance from a house; the combined 'push-pull' package; and the control where houses contained all elements but without active ingredients. Treatments were rotated through 12 houses in a randomized-block design. Outdoor biting was estimated using human landing catches, and indoor mosquito densities using light-traps. None of the interventions provided any protection from outdoor biting malaria vectors. The 'push' reduced indoor vector densities dominated by Anopheles funestus by around two thirds. The 'pull' device did not add any benefit. In the light of the high Anopheles arabiensis biting densities outdoors in the study location, the search for efficient outdoor protection and effective pull components needs to continue.


Subject(s)
Anopheles , Malaria , Animals , Humans , Malaria/prevention & control , Mosquito Vectors , Odorants/prevention & control , CD40 Ligand
11.
PeerJ ; 11: e15230, 2023.
Article in English | MEDLINE | ID: mdl-37273537

ABSTRACT

Background: Survival and gonotrophic cycle duration are important determinants of the vectorial capacity of malaria vectors but there are a limited number of approaches to estimate these quantities from field data. Time-series of observations of mosquitoes at different stages in the life-cycle are under-used. Methods: Anopheles funestus mosquitoes were caught using various methods over a 7.6-year period in Furvela, Mozambique. Survival and oviposition cycle duration were estimated using (i) an existing time-series approach for analysing dissections of mosquitoes caught in light-traps, extended to allow for variability in the duration of the cycle; (ii) an established approach for estimating cycle duration from resting collection data; (iii) a novel time-series approach fitted to numbers and categories of mosquitoes caught in exit-traps. Results: Data were available from 7,396, 6,041 and 1,527 trap-nights for exit-traps, light-traps and resting collections respectively. Estimates of cycle duration varied considerably between the different methods. The estimated proportion of female mosquitoes surviving each day of 0.740 (95% credible interval [0.650-0.815]) derived from light-trap data was much lower than the estimated daily survival of male mosquitoes from the model fitted to exit-trap data (0.881, 95% credible interval [0.747-0.987]). There was no tendency for the oviposition cycle to become shorter at higher temperature while the odds of survival of females through the cycle was estimated to be multiplied by 1.021 for every degree of mean weekly temperature increase (95% credible interval [0.991-1.051]). There was negligible temperature dependence and little inter-annual variation in male survival. Discussion: The time-series approach fitted to the exit-traps suggests that male An. funestus have higher survival than do females, and that male survival was temperature independent and unaffected by the introduction of long-lasting insecticidal nets (LLINs). The patterns of temperature dependence in females are at variance with results of laboratory studies. Time series approaches have the advantage for estimating survival that they do not depend on representative sampling of mosquitoes over the whole year. However, the estimates of oviposition cycle duration were associated with considerable uncertainty, which appears to be due to variability between insects in the duration of the resting period, and the estimates based on exit-trap data are sensitive to assumptions about relative trapping efficiencies.


Subject(s)
Anopheles , Animals , Male , Female , Oviposition , Mozambique , Time Factors , Mosquito Vectors
12.
Nat Commun ; 14(1): 2750, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173317

ABSTRACT

Malaria cases can be classified as imported, introduced or indigenous cases. The World Health Organization's definition of malaria elimination requires an area to demonstrate that no new indigenous cases have occurred in the last three years. Here, we present a stochastic metapopulation model of malaria transmission that distinguishes between imported, introduced and indigenous cases, and can be used to test the impact of new interventions in a setting with low transmission and ongoing case importation. We use human movement and malaria prevalence data from Zanzibar, Tanzania, to parameterise the model. We test increasing the coverage of interventions such as reactive case detection; implementing new interventions including reactive drug administration and treatment of infected travellers; and consider the potential impact of a reduction in transmission on Zanzibar and mainland Tanzania. We find that the majority of new cases on both major islands of Zanzibar are indigenous cases, despite high case importation rates. Combinations of interventions that increase the number of infections treated through reactive case detection or reactive drug administration can lead to substantial decreases in malaria incidence, but for elimination within the next 40 years, transmission reduction in both Zanzibar and mainland Tanzania is necessary.


Subject(s)
Malaria , Humans , Tanzania/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Incidence , Prevalence , Movement
13.
Epidemics ; 41: 100639, 2022 12.
Article in English | MEDLINE | ID: mdl-36343496

ABSTRACT

Malaria persists at low levels on Zanzibar despite the use of vector control and case management. We use a metapopulation model to investigate the role of human mobility in malaria persistence on Zanzibar, and the impact of reactive case detection. The model was parameterized using survey data on malaria prevalence, reactive case detection, and travel history. We find that in the absence of imported cases from mainland Tanzania, malaria would likely cease to persist on Zanzibar. We also investigate potential intervention scenarios that may lead to elimination, especially through changes to reactive case detection. While we find that some additional cases are removed by reactive case detection, a large proportion of cases are missed due to many infections having a low parasite density that go undetected by rapid diagnostic tests, a low rate of those infected with malaria seeking treatment, and a low rate of follow up at the household level of malaria cases detected at health facilities. While improvements in reactive case detection would lead to a reduction in malaria prevalence, none of the intervention scenarios tested here were sufficient to reach elimination. Imported cases need to be treated to have a substantial impact on prevalence.


Subject(s)
Malaria , Humans , Malaria/diagnosis , Malaria/epidemiology , Malaria/prevention & control , Prevalence , Family Characteristics , Surveys and Questionnaires , Tanzania/epidemiology
14.
Commun Med (Lond) ; 2: 93, 2022.
Article in English | MEDLINE | ID: mdl-35899148

ABSTRACT

Background: SARS-CoV-2 variants of concern, such as Omicron (B.1.1.529), continue to emerge. Assessing the impact of their potential viral properties on the probability of future transmission dominance and public health burden is fundamental in guiding ongoing COVID-19 control strategies. Methods: With an individual-based transmission model, OpenCOVID, we simulated three viral properties; infectivity, severity, and immune-evading ability, all relative to the Delta variant, to identify thresholds for Omicron's or any emerging VOC's potential future dominance, impact on public health, and risk to health systems. We further identify for which combinations of viral properties current interventions would be sufficient to control transmission. Results: We show that, with first-generation SARS-CoV-2 vaccines and limited physical distancing in place, a VOC's potential future dominance is primarily driven by its infectivity, which does not always lead to an increased public health burden. However, we also show that highly immune-evading variants that become dominant, even in the case of reduced variant severity, would likely require alternative measures to avoid strain on health systems, such as strengthened physical distancing measures, novel treatments, and second-generation vaccines. Expanded vaccination, that includes a booster dose for adults and child vaccination strategies, is projected to have the biggest public health benefit for a highly infective, highly severe VOC with low immune-evading capacity. Conclusions: These findings provide quantitative guidance to decision-makers at a critical time while Omicron's properties are being assessed and preparedness for emerging VOCs is eminent. We emphasise the importance of both genomic and population epidemiological surveillance.

15.
Infect Dis Poverty ; 11(1): 61, 2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35659301

ABSTRACT

BACKGROUND: Substantial research is underway to develop next-generation interventions that address current malaria control challenges. As there is limited testing in their early development, it is difficult to predefine intervention properties such as efficacy that achieve target health goals, and therefore challenging to prioritize selection of novel candidate interventions. Here, we present a quantitative approach to guide intervention development using mathematical models of malaria dynamics coupled with machine learning. Our analysis identifies requirements of efficacy, coverage, and duration of effect for five novel malaria interventions to achieve targeted reductions in malaria prevalence. METHODS: A mathematical model of malaria transmission dynamics is used to simulate deployment and predict potential impact of new malaria interventions by considering operational, health-system, population, and disease characteristics. Our method relies on consultation with product development stakeholders to define the putative space of novel intervention specifications. We couple the disease model with machine learning to search this multi-dimensional space and efficiently identify optimal intervention properties that achieve specified health goals. RESULTS: We apply our approach to five malaria interventions under development. Aiming for malaria prevalence reduction, we identify and quantify key determinants of intervention impact along with their minimal properties required to achieve the desired health goals. While coverage is generally identified as the largest driver of impact, higher efficacy, longer protection duration or multiple deployments per year are needed to increase prevalence reduction. We show that interventions on multiple parasite or vector targets, as well as combinations the new interventions with drug treatment, lead to significant burden reductions and lower efficacy or duration requirements. CONCLUSIONS: Our approach uses disease dynamic models and machine learning to support decision-making and resource investment, facilitating development of new malaria interventions. By evaluating the intervention capabilities in relation to the targeted health goal, our analysis allows prioritization of interventions and of their specifications from an early stage in development, and subsequent investments to be channeled cost-effectively towards impact maximization. This study highlights the role of mathematical models to support intervention development. Although we focus on five malaria interventions, the analysis is generalizable to other new malaria interventions.


Subject(s)
Malaria , Humans , Machine Learning , Malaria/epidemiology , Malaria/prevention & control , Models, Theoretical , Prevalence
16.
Food Waterborne Parasitol ; 26: e00146, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35198746

ABSTRACT

The study assessed the role of non-commercial cyprinid species in maintaining the opisthorchiasis focus in the middle Ob River basin, Tomsk region, Russia. The source of O. felineus infection for humans and carnivores is fish of the family Cyprinidae. This is the most numerous family, 14 species live in the middle Ob River basin, which includes 6 commercial species and 8 non-commercial species. This study aimed to investigate the current situation on infestation of non-commercial cyprinids with O. felineus metacercariae and their role in maintaining and spreading the natural focus of opisthorchiasis in the middle Ob River basin. We investigated 4 non-commercial species (tench, sunbleak, common bleak, gudgeon), which are highly abundant in water bodies. Tench, common bleak and gudgeon are objects of amateur fishing. These species are traditionally included in the diet of the local population. Opisthorchis felineus metacercariae were recorded in muscles of all the examined fish species. The identification of metacercariae was confirmed by morphological methods and PCR diagnostics. Tench and sunbleak are the main sources of opisthorchiasis infection in the floodplain lakes of the Ob River basin (the prevalence of tench infection is 89.3% and mean intensity of infection is 11.2 metacercariae per fish, the prevalence of sunbleak infection is 50.9% and the intensity of infection is 4.25 metacercariae per fish). The prevalence of infection in the introduced common bleak from the rivers of the middle Ob River basin is rapidly increasing from 2.4 (2016-2018) to 37.5% (2020-2021), and mean intensity of infection increased from 1 to 4.15. The epizootic state of water bodies in the middle Ob River basin remains unfavorable in relation to opisthorchiasis. Tench, common bleak and sunbleak, along with ide and dace, are the main source of infection for humans and animals, which is evidenced by high infection with Opisthorchis felineus metacercariae in these numerous fish species. They pose the greatest danger of infection of people and animals with opisthorchiasis. These species should be included in the campaign to avoid raw and poorly cooked fish in the diet. In addition, such species as roach, bream and sunbleak also pose the danger of infection with opisthorchiasis, but to a lesser extent.

17.
Epidemics ; 38: 100535, 2022 03.
Article in English | MEDLINE | ID: mdl-34923396

ABSTRACT

BACKGROUND: As vaccination coverage against SARS-CoV-2 increases amidst the emergence and spread of more infectious and potentially more deadly viral variants, decisions on timing and extent of relaxing effective, but unsustainable, non-pharmaceutical interventions (NPIs) need to be made. METHODS: An individual-based transmission model of SARS-CoV-2 dynamics, OpenCOVID, was developed to compare the impact of various vaccination and NPI strategies on the COVID-19 epidemic in Switzerland. OpenCOVID uses the Oxford Containment Health Index (OCHI) to quantify the stringency of NPIs. RESULTS: Even if NPIs in place in March 2021 were to be maintained and the vaccine campaigns rollout rapidly scaled-up, a 'third wave' was predicted. However, we find a cautious phased relaxation can substantially reduce population-level morbidity and mortality. We find that a faster vaccination campaign can offset the size of such a wave, allowing more flexibility for NPIs to be relaxed sooner. Model outcomes were most sensitive to the level of infectiousness of variants of concern observed in Switzerland. CONCLUSION: A rapid vaccination rollout can allow the sooner relaxation of NPIs, however ongoing surveillance of - and swift responses to - emerging viral variants is of utmost importance for epidemic control.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Switzerland/epidemiology , Vaccination
18.
Malar J ; 20(1): 476, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34930254

ABSTRACT

BACKGROUND: Efforts to improve the impact of long-lasting insecticidal nets (LLINs) should be informed by understanding of the causes of decay in effect. Holes in LLINs have been estimated to account for 7-11% of loss in effect on vectorial capacity for Plasmodium falciparum malaria in an analysis of repeated cross-sectional surveys of LLINs in Kenya. This does not account for the effect of holes as a cause of net attrition or non-use, which cannot be measured using only cross-sectional data. There is a need for estimates of how much these indirect effects of physical damage on use and attrition contribute to decay in effectiveness of LLINs. METHODS: Use, physical integrity, and survival were assessed in a cohort of 4514 LLINs followed for up to 4 years in Kenya. Flow diagrams were used to illustrate how the status of nets, in terms of categories of use, physical integrity, and attrition, changed between surveys carried out at 6-month intervals. A compartment model defined in terms of ordinary differential equations (ODEs) was used to estimate the transition rates between the categories. Effects of physical damage to LLINs on use and attrition were quantified by simulating counterfactuals in which there was no damage. RESULTS: Allowing for the direct effect of holes, the effect on use, and the effect on attrition, 18% of the impact on vectorial capacity was estimated to be lost because of damage. The estimated median lifetime of the LLINs was 2.9 years, but this was extended to 5.7 years in the counterfactual without physical damage. Nets that were in use were more likely to be in a damaged state than unused nets but use made little direct difference to LLIN lifetimes. Damage was reported as the reason for attrition for almost half of attrited nets, but the model estimated that almost all attrited nets had suffered some damage before attrition. CONCLUSIONS: Full quantification of the effects of damage will require measurement of the supply of new nets and of household stocks of unused nets, and also of their impacts on both net use and retention. The timing of mass distribution campaigns is less important than ensuring sufficient supply. In the Kenyan setting, nets acquired damage rapidly once use began and the damage led to rapid attrition. Increasing the robustness of nets could substantially increase their lifetime and impact but the impact of LLIN programmes on malaria transmission is ultimately limited by levels of use. Longitudinal analyses of net integrity data from different settings are needed to determine the importance of physical damage to nets as a driver of attrition and non-use, and the importance of frequent use as a cause of physical damage in different contexts.


Subject(s)
Insecticide-Treated Bednets/statistics & numerical data , Mosquito Control/statistics & numerical data , Kenya , Malaria/prevention & control
19.
PLoS Negl Trop Dis ; 15(11): e0009992, 2021 11.
Article in English | MEDLINE | ID: mdl-34843475

ABSTRACT

Gambiense human African trypanosomiasis is a deadly disease that has been declining in incidence since the start of the Century, primarily due to increased screening, diagnosis and treatment of infected people. The main treatment regimen currently in use requires a lumbar puncture as part of the diagnostic process to determine disease stage and hospital admission for drug administration. Fexinidazole is a new oral treatment for stage 1 and non-severe stage 2 human African trypanosomiasis. The World Health Organization has recently incorporated fexinidazole into its treatment guidelines for human African trypanosomiasis. The treatment does not require hospital admission or a lumbar puncture for all patients, which is likely to ease access for patients; however, it does require concomitant food intake, which is likely to reduce adherence. Here, we use a mathematical model calibrated to case and screening data from Mushie territory, in the Democratic Republic of the Congo, to explore the potential negative impact of poor compliance to an oral treatment, and potential gains to be made from increases in the rate at which patients seek treatment. We find that reductions in compliance in treatment of stage 1 cases are projected to result in the largest increase in further transmission of the disease, with failing to cure stage 2 cases also posing a smaller concern. Reductions in compliance may be offset by increases in the rate at which cases are passively detected. Efforts should therefore be made to ensure good adherence for stage 1 patients to treatment with fexinidazole and to improve access to care.


Subject(s)
Trypanocidal Agents/administration & dosage , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/transmission , Democratic Republic of the Congo/epidemiology , Humans , Models, Theoretical , Trypanosoma brucei gambiense/drug effects , Trypanosoma brucei gambiense/physiology , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...